jaginsburg.com
  • home
  • journalism | science | tech
    • sci | tech
  • exhibitions
    • introduction
    • mickey pallas
    • News art
  • children's media
  • photography
    • photography
    • book covers
  • blogs
    • Medium
    • better
    • PechaKucha
    • TrackerNews (archive)
    • archived faves

Science Hack Day Chicago 2014: Reinventing the Space Suit, Cosmic Biomicmicry and the Joy of Thinking Different

4/18/2014

0 Comments

 
Picture
Science Hack Day (SHD) at the Adler Planetarium is a hoot. Two years ago, I was thoroughly charmed at demo day watching teams—who had spent the night at the museum—present a series of delightfully and often literally “out there” ideas. “Galaxy Karaoke” and “Quantum Foam” anyone? How about an app to calculate that pesky space-time jet lag for those really long flights? It’s an Einstein-inspired must-have. Or how about a brain wave-operated video game?

I couldn’t make it last year, but when an email announcement wafted into my inbox this year, I cleared the calendar. This time I wanted to be part of a team and was no longer intimidated by the sad fact that I am not a very good coder (sorry Starter League—more my fault than yours). Instead, I could offer words. What startup couldn’t use a few good words? 

Since 2010, there have been dozens of Science Hack Days held all over the world. This time for extra fun, the Chicago SHD was run concurrently with the International Space Apps Challenge.

Some teams came ready-made, knowing exactly what they wanted to build, though most people were like me: clueless but willing. Remarkably, not only did groups gel around projects by early afternoon, but the work quickly become so riveting, it took coaxing to get us all to take a break on Sunday morning to go see a free planetarium show. It turns out that if you want to think outside the box, it really helps to see beyond the planet. A quick jaunt through the solar system, through the Milky Way, past billions of galaxies to the edge of the known universe clears out all manner of cognitive cobweb. “Shoot for the stars” is just good advice. 

I joined Team Sentio, working on a Space Apps project for the Space Wearables: Fashion Designer to Astronauts challenge. Cosmic style absolutely counts, but we took things a bit deeper, reimagining the space suit in terms both of form and of function. 

There were four of us: Kent, a proud member of The Mars Society and veteran of Mars Desert Reseach Station who has thought deeply about what it would take to live and work far from our lovely ”pale blue dot” planet. Alex, an extraordinarily creative thinker whose annual visits to the Burning Man Festival have reinforced his rather boundary-stretching ideas about perception. Julieta, whose impressive official title—Associate Director, Space Visualization Laboratory, Adler Planetarium—only scratches the surface of a deep interest in senses and sense-making. For my part, I tried to keep up with on-the-fly research, pulling up articles and papers on everything from lateral lines in fish to the impact of toolmaking on the evolution of the human hand. We also had a team mascot: six year-old Maia—by far the cutest one in the picture above. 

RETHINKING THE SPACE SUIT 

The modern space suit can make even the fittest astronaut look like the Stay Puft Marshmallow Man. It is a cocoon designed for disaster, keeping out radiation, regulating body temperature, supplying oxygen, facilitating what is delicately referred to as “astronaut hygiene” and protecting against the occasional ping of a stray micrometeorite. All of this, of course, is essential, but it hobbles an astronaut from the main mission: exploration.

We wouldn’t think of sending lovely Maia out to explore her neighborhood sealed in a bulky helmet and gloves, yet this is exactly what we have done to astronauts trying to explore the cosmic neighborhood. Our senses tell us everything from whether the sky is cloudy or clear, humid or dry, hot or cold, raining or snowing, day or night. But put on a space suit and suddenly the steady flood of information we take for granted is either muffled or gone. It is hard to walk, turn one’s head, kneel down to take a closer look or even pick things up. Even sight, the one sense that as Julieta points out allows us access to the heavens from earth, is restricted to a much reduced narrow field of view. 

The team wondered whether there might be a way to redesign the space suit so instead of limiting perception, it increases it. We came up with Sentio, a spacesuit that not only reinstates senses rendered useless in space, but then goes a step beyond, augmenting and extending them for applications that haven’t been needed here on Earth.

There are two parts to the design: physical and sensor-based. We started by rethinking the glove, which meant reexamining the hand: 

"The hand is where the mind meets the world. We humans use our hands to build fires and sew quilts, to steer airplanes, to write, dig, remove tumors, pull a rabbit out of a hat. The human brain, with its open-ended creativity, may be the thing that makes our species unique. But without hands, all the grand ideas we concoct would come to nothing but a very long to-do list…"

—Carl Zimmer, National Geographic

Darwin was the first to speculate that toolmaking could have played role in developing the shape of the human hand, which is unique among primates and, indeed, unique among all species. It turns out he was right.  Our destiny has literally always been in our hands. Yet while human hands are exquisitely adapted to life on Earth, new hands with new abilities will likely be required for life beyond our planet. For that, evolution will need a jumpstart. 

The Sentio suit glove has two parts: a control panel for the hand itself and a series of snap-on extensions for whatever task needs to be done. Why try to grasp a drill when you can be the drill? For that matter, why stop at hands? Boots can be redesigned for climbing and a prehensile tail added for better balance and grasping. We have an ark-full of nature’s designs all around us for inspiration.(Bio)mimicry is simply the highest form of flattery. 

Organisms capable of changing form turns out to be more the rule than the exception. Many species, from butterflies to frogs, undergo radical transformation from one stage of life to another to adapt to different environments and needs. Although a caterpillar may be well-suited for nibbling milkweed plants, if a Monarch has any hope of flying to Mexico for the winter, it can only do so as a butterfly. Likewise, humans flying to other worlds would be well-served to add shape-shifting to the tool kit.  

The Sentio suit is also fitted out with sensors. A sensor on the outside of the glove, for example, could be coupled to  pressure-triggering mechanism on the inside, turning the glove into a kind of second skin. Likewise, a sensor placed on a drill bit module could be coupled with a sensor in the glove control panel, providing an astronaut with a physical, real-time intuitive sense of the drill bit’s temperature.

An astronaut also could be sensorially attached to a series of little rovers (Kent dubbed them “goslings”), instantly increasing an astronaut’s “footprint” beyond the suit. 

Senses could also be remapped in a sort of synthesia by design. For example,  a sensor measuring cosmic rays could be programmed to tighten a wrist band when conditions were dangerous, thus giving physical sensation to an otherwise invisible experience. Solar wind might be turned into sound. This is data visualization blown out for all the senses, turning abstractions into formats that can be more readily and quickly interpreted. Once you start skipping down this path, the possibilities are endless.

Senses could even be shared and empathy engineered. For example, if an astronaut were to get hurt, a sensory signal could be sent out to others on the team who would instantly feel whether the injury involved an arm or a leg, even if their injured colleague couldn’t speak. 

The Sentio suit is also designed to take better advantage of sight, the one sense that functions in space pretty much as it does on Earth. The surface of the suit is "bedazzled" with a colorful array LEDs that can be programmed communicate identity, state of health, type of work, news of a discovery, danger or just about anything else. This is another example of a taking a cue from nature’s playbook. Bioluminescence is a fairly common form of communication, used by everything from fireflies and creatures of the deep to fungi and algae. 

Perhaps aliens, at least the science fiction kind we know about, look alien for a reason. Why should the forces of evolution—change over time for the survival of the fittest—stop at the stratosphere? 

MORE GOOD IDEAS

Ours, of course, was just one of many ideas floating around the room and after 30 hours of deep thinking and imaginative hacking, it was time to present. Among my favorites: 

  • A scheme to trick out a dual control kite with Arduino servos to  gently steer a very small satellite-connected sensor system from its transport ship to the surface of Mars. This team did a lot of kite-flying on the beach and nearly blew us all away with an ad hoc indoor wind tunnel. The system will tested in May using a weather balloon designed to release its payload at 100,000 feet altitude, which just happens to roughly approximate Martian conditions. 
  • Planet Lab: A website-in-development designed to help students—and their teachers—learn science. Only one out of every five high school students in the US demonstrates proficiency in science. There are many reasons for this sad state of affairs, including out-of-date textbooks. School districts typically use the same books for the better part of decade, but science moves at an astronomically faster clip. The site connects kids and teachers to leading science organizations and researchers and includes a database of classroom-ready and beyond-the-classroom projects. 
  • The Wii / Quadcopter / Oculus mashup: Basic research rocks. For no other reason than to demonstrate that they could do it, this team wired a quadcopter drone to a Wii balance board and the drone’s camera to an Oculus Rift virtual reality headset. The “pilot” can see a drone’s eye view through the headset while operating the drone by shifting weight on the balance board. Quadcopter Quidditch anyone?
••••••••••••••••••••••

A week ago I had no idea I would be interested in any of this. A week ago, I would not have thought that four strangers could come together and engage in such a far-ranging, creative and compelling discussion for hours on end. Or that our brainstorming would cascade into so many different concepts with applications far beyond the range of our mission. Imagine empathically wired teams of emergency first responders or LED baseball caps colorfully registering fan support and disapproval. The rooftops around Wrigley will never be the same.  

Rather than the usual narrow hackathon focus on “pain points” (no Grubhubs for the Moon or Sittercities for Mars here), the teams thought big, played with tech and to quote Ariel Waldman, “instigator” of Science Hack Day, learned ”to manipulate science as just another material.” This is what thinking different is all about and it is pretty wonderful. Just take the first star on the left, then straight on ‘til dawn. Magic every time. 

— J. A. Ginsburg / @TrackerNews

RELATED:  

• Ariel Waldman on Science Hack Day, San Francisco (video)
• Science Hack Day: Basic Brilliance / TrackerNews Dot to Dot / J.A. Ginsburg

• Science Hack Day 2014 / Sentio Space Hack by Kent Nebergall / Video by Julieta Aguilera
• Can Robots Be Created with a Sixth Sense? 

• Lateral Line Helps Fish Determine Sound Direction

• Hexagonal plate skin gives robots sense of touch

• Scientific papers related to Hex-O-Skin

• World Cup 2014: Paraplegics Will Walk Independently in Mind-Controlled Robotic Suits 

• Think Different / Apple ad (video)
0 Comments

The Motors of August Cicadas

3/14/2014

0 Comments

 
(reprinted from “Germtales” 8/16/06)

I am being serenaded by cicadas and it is glorious. They are the sound of summer, the neon hum to the flicker dance of lightning bugs on warm humid nights. Cicadas are everywhere and nowhere. How can something that loud and large be so hard to spot?

Their suits from a past life pile up, empty shells abandoned near trees, sometimes in mid-climb. Each is perfect in every exquisite detail, with a slit along the back where its owner wriggled out to take on a new identity complete with wings, its long subterranean childhood forgotten in the rush to meet the future. 

Dinosaurs listened to cicadas. And before them, lizards, amphibians and other insects as far back a quarter of a billion years ago during the Permian period when even Pangaea wasn’t quite Pangaea yet. Cicadas have survived global extinctions, ice ages and the asphalt tombs of urban sprawl. Summer after summer they deftly navigate a gauntlet of hungry predators in a daring dash to the treetops for a few brief weeks of uncorked noisy revelry, a blow-out party years in preparation.

Scientists know quite a lot about cicadas, from the meanings of their songs  to their diva-worthy requirements: a soil temperature of at least 64°F to emerge and an air temperature of at least 70°F to sing. They have documented the tragic/comic cicadian ardor for lawn mowers and leaf blowers and analyzed the male’s tymbals (abdominal ridges) used to compose love songs. Though wings are for mostly for flying, females also use them for signaling. “Over here, honey!”

Still, despite so much research, cicadas have managed to keep more than a few secrets.

For starters, each fertilized female lays hundreds of eggs in tree branches, which means the first order of business for newly hatched larvae is literally to take a flying leap into the unknown. It is the fastest way down and they have no time to lose. They must dig into the ground and start feeding on tree roots before the weather turns frosty. Just like Carl Sagan’s stars, there are billions upon billions of larvae, yet I don’t think I have ever seen a single one in mid-leap. Maybe they leap in the dark. Or maybe they disappear in the glint of the sun. Or maybe, just maybe, they magically turn themselves invisible. They are, after all, in the genus Cicada Magicada. 

Even more of a mystery, though, is why a few species in North America emerge only once every 13 or 17 years. The most popular theory explaining this unique prime number preference involves predator defense. Most predator species—birds, bats, squirrels, raccoon, skunks, possums—have reproductive cycles of one or two years. A cicada emergence on this scale is a luck-of-the-draw surprise feast and when it is over, bulked up predator populations quickly crash back to more manageable levels. There are always far more cicadas than predators. 

But why 13 and 17 years specifically? Why not 5 or 7 or 19? Most of the hundreds upon hundreds of other cicada species in the world, including species native to the very same areas of North America, manage to survive just fine on a two-year cycle. Also, spending too much time underground is not without risk. A forest might be ripped up to make way for a highway or parking lot, its root-dependent nymphs lost as collateral damage. Trees can also die of disease (since 2002, the Emerald Ash borer, for example, has killed tens of millions of trees). Fire, farming, urban sprawl—each takes a toll.

These, however, are comparatively recent hazards to which our cicadian heroes have had little time to adapt. To what, then, could a 13 or 17-year cycle be adapted? Is it possible that these broods are a kind of time shadow, vestiges of a changing climate at the end of the Pleistocene? As North America warmed up and glaciers melted, cicada populations expanded into new areas, but it was a long process spanning millennia. A population—or brood—of cicadas might have found itself stuck underground for an extra season or two or more waiting for the soil to heat up to that critical 64°F degrees. Perhaps they continued to feed on roots while biding their time. What if a cold spell lasted for several years and the cicadas that survived emerged with their internal clocks reset? Would the new cycle continue since there would be no environmental pressure for it to change? 

The mystery goes even deeper: How exactly do insects with a brain the size of a speck count at all? It turns out they take their cue from trees. In a very clever experiment, a team of researchers at the UC-Davis tricked orchard trees into two foliage cycles per season. The 17-year cicada nymphs sucking on roots emerged at the 17th cycle, even though only 8 ½ years had passed (abstract).

That still doesn’t quite explain how cicadas count to a specific number, which is thought to be hard-wired into their biology. In fact, 13 and 17-year cicadas could be counting by fours altogether, with a one year add-on: 

(3 x 4 ) + 1 = 13 and (4 x 4) + 1 = 17.

On a molecular level, it turns out there is not much difference between 13 and 17-year cicadas. If a 17-year cicada emerges early, it is often by four years (though sometimes by one), which means that it is possible that the 13-year broods developed as a sub-population of early-emerging 17 year cicadas. No one really knows. 

Head-spinning. 

Next year, Brood XIII—which ironically happens to be a 17-year brood—will emerge here in Chicago, as well as parts of Michigan, Wisconsin and Iowa. Perhaps a few popped out early because it has been a pretty thunderous season. The motors of August cicadas, so loud, so summer, so right now, but also a sound of the deep past, of patience and of time itself. This is just the warm up band for the chorus to come. 

I can’t wait.

— J.A. Ginsburg  / @Trackernews

* Brood XIII won’t bee seen again until 2024. If you can’t wait that long, here is a schedule of all the North American 17 and 13-year broods. 

** video credit: Amazing Cicada life cycle - Sir David Attenborough’s Life in the Undergrowth - BBC wildlife

0 Comments

It Takes an Economist: Tallying Natural Capital

10/8/2013

0 Comments

 
Picture
From the Archives: This post was originally published on July 5, 2011, on a platform called webdoc, which is no longer in operation. 

A little advice for governments, NGO’s social entrepreneurs and anyone else hoping to help the “bottom billion” live better lives: Unless and until ecosystems services are taken into account, all efforts at poverty reduction will fail.

That’s the blunt, sobering message banker Pavan Sukhdev delivered in an address to the London School of Economics last April:

"Half to 90% of the livelihood incomes of the poor…are actually coming to them from nature. So if you are careless about managing these resources, or indeed the access of the poor to those resources, then you are, in fact, cutting at the very root of the livelihoods of the poor."

Protecting what has been called natural capital—the services nature provides—can be as direct as safeguarding a watershed, or as abstract as defending a rainforest. The value of the forest extends far beyond its trees and atomospheric carbon-absorbing capabilities. Above the forest, an “aerial river” forms that cycles freshwater critical to the survival of subtropical grain belt farms downwind. 

Over a billion people in the developing world rely on fish as their main source of animal protein, so ailing oceans and faililng fisheries are at once a natural tragedy and a human calamity. Decades of industrial-scale ocean trawler-fishing, clear-cutting mangroves for shrimp farms and the loss of coral reefs from pollution, disease, a warming climate and acidifying oceans have left millions of people hungry and out of work.

Their options are limited. They cannot survive where they are and often have nowhere else to go. 

The  economic gains of such rapacious fishing and shrimp farming tend to be short-lived and, once government subsidies are figured in, a financial wash, or worse, for local and regional economies. 

GDP as a measure of economic health is simply too narrow and flawed a tool, says Sukhdev. A full accounting—one that includes ecosystems services in the mix—tells a very different story.

In other words, the books are as cooked as the climate.

Assigning a value to what has always been free is not easy, so the G8+5 commissioned TEEB, The Economics of Ecosystems and Biodiversity project, naming Sukdev, a Deutsch Bank veteran, as its Study Leader. Its mission: to describe, quantify and propose mechanisms for capturing the worth of nature’s largesse.

Over the last four years, TEEB, which is hosted by the United Nations Environmental Program, has produced a series of reports aimed at a key players: national and local policymakers, the business sector and private citizens through its Bank of Natural Capital website.

Connecting the dots between environmental and economic health is about shifting incentives—the “enabling conditions—into better balance.”The sheer waste from wrong-headed development schemes and business-as-usual practices is staggering,” notes Sukdev. 

Each year, the top 3,000 global companies use an estimated $2.2 trillion worth of ecosystems services. Add in private and public sector consumption and “…you end up with something like upwards of $6 trillion per annum in social costs imposed by business-as-usual. That’s like 1/10 of the global economy,” says Sukdhev.

Atlhough the economist strongly believes in policy-driven solutions, changing course quickly will require a strong buy-in from the private sector, which accounts for 70% of the global economy and nearly 80% of employment. It would be in their best interests. The “free” stuff is running out.

Ecosystems & Epidemiology

TEEB’s list of ecosystems services is a long one, from double-duty mangroves that serve as fish nurseries and storm protection and double-duty rainforests that soak up carbon and regulate local climate, to plant compounds with medical potential, waste water-filtering swamps and soil microorganisms essential for crops health

Pathogen containment is another, often overlooked, benefit.

According to a study published in the Journal of Emerging Infectious Diseases,deforestation in the Amazon rainforest has triggered an increase in malaria cases. Presented with acres upon acres of puddle-prone habitat in which to lay eggs, the malarial mosquito population did just that and their blood-sucking numbers exploded. The economy took a hit as well from people who were either too sick to work, or preoccupied with taking care of family members.

A warmer climate has also provied a boon for all sorts of insect vectors, including ticks. More survive through the winter and ranges have expanded. 

If you happen to be a moose in North America, this is potentially fatal news. In the old days, a single animal could easily pick up 30,000 “winter” ticks in the fall. But istead of falling off and dying in the snow come spring, ticks are landing on bare ground and surviving. Earlier thaws have also meant a longer tick breeding season. Now, some moose have been found with as many as 160,000 ticks. They literally are having the blood sucked right out them.

Back on the human medical beat, the tick that carries Lyme Disease also carriesbabesia and the Powassan virus and the incidence of all three diseases is on the rise. 

Babesia, a parasite causing an illness similar to malaria, is particularly worrisome because asymptomatic blood donors can contaminate the blood supply.

If that were not enough bad news, a single tick can deliver multiple pathogens, causing simultaneous illnesses, making diagnosis and treatment tricky.

Other strains of babesia affect cattle. In fact, babesiosis is among the most serious diseases threatening livestock all over the world and there is no vaccine.

Babesia was eradicated in the US during the 1940s, but veterinarians say it could easily stage a comeback. Ticks are starts to show resistance to the chemicals used to protect cows.The cost for managing for the first year of an outbreak is estimated $1.3 billion.

Just add it to the natural captial tally…

— J A. Ginsburg / @TrackerNews

RELATED: 

• Pavan Suhkdev’s website

• Global Climate Change and Infectious Diseases / NEJM, Emily K. Shuman, M.D.

• Deforestation and Malaria in Mâncio Lima County, Brazil / CDC, Sarah H. Olson, Ronald Gangnon, Guilherme Abbad Silveira, and Jonathan A. Patz

• Riders of the River / Texas Tick Riders (video) 

0 Comments
    Picture

    Background

    Dot to Dot grew out of the TrackerNews Project, a demo news aggregator developed for InSTEDD, an independent spin-off of Google.org's humanitarian practice that focused on health issues, humanitarian response and technology.
    — J.A. Ginsburg
    


    Archives
    
    • Bats, Trees And Bureaucrats: Ebola And How Everything, Positively Everything, Connects


    • Scrubba Dub Carlos and the Big Bad Enterovirus: Why Sneeze When You Can Sing? 

    • Ebola, Bats and Déjà Vu 
    All Over Again

    • Scaling Good: Project Frog’s Buildings And The Kitchen Community’s Learning Gardens

    • Thumbs Up And High Fives: Evolution, Hands And 3D Printing

    • Legos, Makers, Molecules, Materials And The Very Big Business Of Small Things

    • Solid: When Bits and Atoms Dance

    • Science Hack Day Chicago 2014: Reinventing The Space Suit, Cosmic Biomicmicry And The Joy Of Thinking Different

    • The Motors of August Cicadas

    • Mulling Snow, Climate, Pain Points, Bootstrapping And Chicago’s Advantage

    • Glass, Tech And Civilization: The Material That Makes Just About Everything Better

    • A Tale Of Two Maps And Why You Can’t Teach An Old Grid New Tricks

    • When Bad Things Happen To Good Content: Form(At), Function, Perspective And Possibilities

    • The Sum Of Its Parts: Autozone Meet Autodesk (Please) / On Supply Chains, Carbon Footprints And How 3D Printing Can Change The Game (Again)

    • It Takes An Economist: Tallying Natural Capital

    • Beyond Measure: Da Vinci’s Genius, Peripheral Vision, The Prepared Mind, Metric Traps And Hacking The Filter Bubble

    A Solstice Encore: Imaginary Carl Sagan, A Holiday Mix Tape And The Tannahill Weavers



    Categories

    All
    3D Printing
    Architecture
    Automotive
    Biology
    Censorship
    Chicago
    Climate
    Conferences
    Economics
    Education
    Electric Grid
    Electronics
    Energy
    Environment
    Evolution
    Gardens
    Graphene
    Green Building
    Hardware
    Information
    Innovation
    Makers
    Manufacturing
    Materials Science
    Natural Resources
    Nature
    Prosthetics
    Software
    Space
    Startups
    Tech
    Weather


    RSS Feed

introduction
Picture
sci / tech
blogs
children's media
Picture
exhibitions
photography
Website designed by 
J.A. Ginsburg